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1. Introduction

A multivariate normal linear model in its canonical form consists of a
data matrix X = (X‘,...,xk):p x k with independent columns Xi ~ Np(ti,):),
i =1,...,k, and an independent p x p Wishart matrix S ~ Wp(n,Z). Here
ti’s and [ are unknown. This kind of data arises, for example, if we are

sampling from k different multivariate normal populations N (p , 1),

i=1,...,k, with a sample of size n, from the ith populatlon If X and
S denote respectively the sample mean vector and the sample sum of
squares and products matrix, we may write )( n, X i=1,...,k, and
S =38 .+ Sk to get the above setup where n=n ...+ n - k and
jn_i By i=1, ,k. Under this formulation we consider the problems
of estlmatmg I, the common variance-covariance matrix, Z—l , the common

precision matrix, and |Z|, the common generalized variance. We assume that

n>p+ 1.

From the classical point of view without any decision-theoretic
consideration, one would simply ignore X (since ¢ i’s are unknown) and
propose multiples of S, s ' and ISI which are unbiased for [, E—‘ and IZI
respectively. Even from a decision-theoretic point of view with the
availability of a suitable loss function for each of these problems, one would
normally be tempted to use very simple estimates like best multiples of S, S™!
and ;Sl especially for invaiant loss functions. To illustrate this point
clearly, let us first write down the various logs functions which are commonly
used in this context. We denote by L(i,Z) the loss is estimating I by $. A
similar notation is used for L(i“,):“‘)‘and L(|f,‘|,|2|).

(1.1) LD =tr@ - D7
LED =trd 7 - D
LD =tr fL-eplf 2] -p
L‘<):,):|o) =1 (o ij 7 i) 90 94 » O (weights)




it

tr(37 - H?
tr¢i7'L -

(1.2) L(Eh
a—1 1
LI

a1

L,

e

tr $7'2 - wliT'zl - p

"

L.(f_l,z_‘lQ) = tr(f:—l - E-‘)IQ, Q arbitrary p.d. matrix

(1.3) L gl 1z = dEl - 1gh?
1 (gl 1Th = diizizl - »?
L (gl 1gh = dElzizh - wdtlzieh -1
L (gl Izh = dilzigl - »?
L (2L tgh = dzizIEh - wmdzlzIEDh -1

The loss function L,{(*) in (1.1) and (1.2) is a generalization of squared error
loss and is noninvariant. The loss function L, (') in (1l.1), due to Perlman
(1972), is also noninvariant and is a generalization of squared error loss with
constant weights qij’s. The loss functions L,;(*) and L,(*) in (1.1) and (1.2)
are invariant, L,(} in (1.1) being the entropy loss introduced in James and
Stein (1961) while L;{*) in (1.1) is proposed in Selliah (1964). L,(*) in (1.2) is
introduced and justified in Sinha and Ghosh (1986). All the four loss
functions in (1.2) are completely analogous to those in (1.1). L,(*) in (1.2)
appears in Haff (1979a). The loss functions in (1.3) are all invariant, L, (')
and L,(') being equivalent as far as risk is concerned. We mention in passing
that the loss functions L,(*), L,(*) and L,(*) in (1.1) and (1.2) can be used
interchangeably. For example, L,()A:",Z") in (1.2) can also be used as a
genuine logs function for [ because it satisfies L,(i“‘,f“) > 0 and ‘= 0' if and
only if (f:")"‘ = I. [Loss functions developed by Efron and Morris (1976)

from an empirical Bayes argument are not considered here.]

When a loss function is invariant, an affine (translation and multiplication
by nonsingular matrices) equivariant estimator turns out to be of the form cS

for §, dS-' for I-' and e|S| for |I] where c, d and e are constants. These

PO a i P | A
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estimators ignore X and, due to the invariant nature of the loss function, have
constant risks, independent of [. It is then possible to find the best choice
of these constants, resulting in the best affine equivariant estimators. For
example, it is easy to show that (assuming that n > p + 4)

1.4, = (-p)(np-3)/(n-1), d_= np-l,

(1.4) cu= m 1€y = o

e = e = e
1 2 3

(p-p)!/n!, e, = (n-p-4)!/(n-4)!,
e = (n—p-2)'/(n-2)!

where c, is the best choice of the constant c for the loss function L,(*) in

{1.1) and so on.

The question then arises whether one should be content with these
simple estimators or look for improved estimators. For a decision-theorist, it
is, of course, essential to know if these best multiples of S, S~ and ISI are
admissible for the respective problems. Unfortunately, it turns out none of
these estimators is admissible and, in fact, there are many ways to improve
over them. The improved estimators, however, lack simplicity and, unlike for
the above simple estimators, their frequency properiies are extremely difficult
to study analytically. Numerical computations (Lin and Perlman (1985), Dey
and Srinivasan (1984), Sinha and Ghosh (1986)) show that risk improvements

are marginal in many cases but substantial in some cases.

The various methods leading to improved estimators of ¥, J~! and |Z] are
reviewed in this paper. Broadly speaking, there are three methods: (1)
minimax estimators due to James and Stein (1961) and recently modified and
improved by Dey and Srinivasan (1985); (ii) empirical Bayes estimators
doeveloped by Haff (1977, 1979a, 1979b, 1980); and (iii) Stein’s testimators (Stein
(1964)) as developed by Shorrock and Zidek (1976), Sinha (1976), and Sinha
and Ghosh (1986).

Some open problems are mentioned in the concluding section.

— A o A _ame o . a



2. Minimax Estimators.

To improve over the best affine equivariant estimators, James and Stein
(1961) considered a somewhat smaller group of translation and multiplication
by p » p lower triangular matrices with posilive diagonal elements, The
component translation of this group eliminates X and the estimators which are
equivariant under the triangular group Gfr of the above type turn out to be
of the form KaK' where K = G{. satisfies S = KK’ and a is a diagonal matrix.
For an invariant loss function, the risk of such an estimator is independent
of I and depends only on the diagonal elements of a (apari from n and p).
To compule the risk, one has to use the simple fact that if S ~ Wp(n,I) and S
= KK with K ¢ Glf, then Ki’i ~ in—ih' Kji ~ N(0,1), j > i, and all variables
in K are independent (see Kshirsagar (1978)). It is then possible to find the
best choice of the diagonal elements of a, thus resulting in the best C.I,+—
equivariant estimator which, if different from the best affine equivariant
estimator, is certainly an improvement over it. More.over, because of the
solvability of the group G+T (Kiefer (1957)), the resultant estimator with
constanl risk is automatically minimax. This procedure can be followed to get
improved estimators for the invariant loss functions L,(*) and L;() in (1.1)
and (1.2). For example, for the loss function L,(*) in (1l.1), the minimax
estimator dominating the best affine equivariant estimator c¢,S is given by

KAOK’ where the diagonal elements 6,,...,6, of a, are the solutions of the

equations

(2.1) (n+p=1)(n+p+1)é + (n+p-3)8 +...+ (n—p+1)6p =n+p-1

(n+p=3)é + (n+p-3)(n+p-1)6 +...+ (n—p+1)6p = n+p-3

---------------------------------------------------

Similarly, the minimax estimator dominalting the best affine equivariant
estimator ¢,S for the loss function L,(*) in (1.1) is given by KA,K' with the
ith diagonal element 6; of a, being equal to (n+p-2i+1)~',i = 1,...,,p. Analogous

results can be obtained for the loss functions L;(*) in L3(*) in (1.2).
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Remark 2.1. The above procedure does not work for the loss functions in
(1.3) relevant for estimating the generalized variance because |KAK'| = els]
for some e, which is also affine equivariant. A method for improving over

e|S| is discussed in Section 4.

Remark 2.2, A drawback of the minimax estimators presented above is their
dependence on the coordinate system. Although this can be overcome by
averaging the minimax estimator over the group of p x p orthogonal matrices
with respect to Haar measure, the resultant estimator does not have a simple
form for p » 3 (see Takemura (1984)). Another drawback is that the amount

of risk improvement is very marginal. Stein (1975, 1977a, 1977b) instead

considered the class of orthogonally invariant estimators of the form 3: = R
¢(l.) R where S = RLR' with R the matrix of normalized eigen vectors (RR’ =
R'R =D, 1 = diug(ll ,...,lp) i8 the diagonal matrix of eigen values of S

with t > l) a, . a lp, and &L = (0‘(L),...,QP(L)). For estimating } under
the entropy loss function 1,07 1n (1.1), Stein (1975) proposed using

(2.2) ofu. R A LI IR I FRRe 2

However, the riak funcuaon of the resultant estimator is very complicated and
it has not been theoretically determined that this estimator dominates ¢,S, the
best affine equivariant estimator for this loss, although Monte Carlo simulation
results of Lin and Perlman (1985) indicale this to be the case. Recently, for
the loss function [,(+} in (1.1}, Dey and Srinivasan (1985}, by successfully
applying Stein’s technique, oblained orthogonally invariant minimax estimators
which are improvements over c¢,S as well as over the minimax estimator
presenled before for p 2 3. The improved estimators which are obtained by
solving a certain differential inequality have very simple forms. Also the
percentage risk improvements over the risk of ¢3S and over the minimax risk
are both significant, except for very large n (Dey and Jrivivasan (1984)). We
may mention that Haff's (1982} modification of Stein's estimator 5: also performs
quite well. Dey and Srinivasan’s (1985) improved estimator over ¢;S is given
by R ¢ (L)R' and that over the minimax estimator Ka, K by R #'(L)R'. The

components of ¢ (L) are obtained as




)
b

"

(2.3) oo(L) = ¢;/n - (¢, log £)r (u)/(b +u), i=1,...,p,

where u = E logzli, b0 > 144(p -~ 2)2/(25n2) is a constant, and 'ro(u) is a
1

function satisfying (i) 0 < 7 _(u) < 2(p - 2)/n*, n* = 50°/6; (ii) 7 _(u)

monolone nondecreasing in u and E[-r;(u)] < =, On the other hand, the

components of N (L) are given by

(2.4) o, (L) = ¢.8, - (¢ log ¢ )7 (u)/(b +u), i=1,...,p,

where b‘ » 144(p - 2)2/{25(n+p—1)=} is a constant, and *rl(u) is a function
satisfying (i) 0 <« fl(u) < 12(p - 2)/(5(n+p—1)2). (i1) v(u) monotone non-
decreasing in u and E[T:(u)] < =, Incidentally, another very simple
estimator R OZ(L)R’ with 0;(L) = ‘i(’;’ i=1,...,p, is also minimax and is
an improvement over both ¢,S and KA,K’ for the entropy loss function L,(-) in

{1.1) (Stein (1982), Dey and Srivivasan (1985)).

3. Empirical Bayes Estimators

A unified approach to constructing estimators of } and ™' substantially
better (in terms of amount of risk improvement) than the best affine
equivariant estimators for invariant loss functions in (1.1) and (1.2) and
otherwise better than the unbiased eatimators has been successfully developed
in a series of papers by Haff (1977, 1979a, 1979b, 1980). Assuming an Wishart
conjugate prior for I-', 7' ~ Wp(n,,C"/Y), n' > pr 7 ¥ 0, C p.d.,, which
results in the Wishart posterior for I-!, I-'|s ~ Wp(n + n’, (S + y C)7 '), it
turns out that for most loss functions in (1.1) and (1.2), the estimator
minimizing the Bayesian expected loss is of the form i= a{(S + v C) for some
constant a > 0, An empirical Bayes estimator is then obtained by pretending
that v is unknown and suitably estimating it using the‘marginal density of S

pn% (n-p)/2 -(n+n )/2
[s| {s + » ¢l :

for estimating I, estimators of the form

which is proportional to 7y Quite generally,

(3.1) £ =a(s+ ut (w1}

arc proposed where for simplicity, C is taken as identity, a is a positive

constant, u is an average eigen value of S, and t{(u) i8 nonnegative, bounded
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and nonincreasing. On the other hand, for estimating the precision matrix
T-', estimators of the form

(3.2) 7 =b(s 4+ v t(v)Ip}

are proposed where b > 0 is a constant, v is an average eigen value of S™!,
and t(v) is nonnegative, bounded and nonincreasing. In applications,
depending on the loss function, u(v) maybe the arithmetic, geometric or
harmonic mean of the eigen values of S(S™!'), By (repeatedly) applying the
extremely powerful Wishart ldentity (Stein (1975), Haff (1979b)), Haff was able
to construcl estimators of the forms given in (3.1) and (3.2) better than

Copts and doptS“‘ for all the loss functions in (1.1) and (1.2) respectively
{except for the loss L,(*) in (1.2) which is new). To gel a flavor of Haff-type
improved eslimators, we mention below a few resulis. Note that the loss

function L,(*) in (1.1) or (1.2) is a special case of corresponding L.(*) when Q
-1 (H)
i

estimators due to Haff when the loss function is L;j(*) in (1.1) and (1.2)

is taken as the identity matrix. We denote by tgu) and )‘: the improved

respectively.
~(H) _ _ -1 _ -1

(3.3) T, = a{S + u t(u)Ip}, a = (n+tp+tl) , u = 1/tr(S ),
0 <t & 2(p-1)/(n-p+3), t a constant, dominates CZS.

(3.4) Agﬂ) = a{S + u t(u)Ip}, a = n~x, u = l/tr(S—’),
0 < t(u) € 2(p-1)/n, an absolutely continuous and
nonincreasing function, dominates c¢,S. (If t is chosen as
a constant, the optimal value of t is (p-1)/n)

(3.5) ff”) = a{S + u t(u)Ip}. u = ,S,l/p, t(u) salisfying

(i) (4q*/pn’)u t'(u) + 2q¥(a ~ (pn - 2)/pn Jt(u) + a't (u) & 0
(ii) u t'(u) + 2t (u) 20
x _ p 1/p E )
where qt = p(0 qii) / 9 dominates a S, whatever Q.
1 1

(If t is chosen as a constant, 0 < t & 2q¥[(pn-2)/pn?-a]/a?
will do.]




-9 -

Remark_3.1. The result for the loss function L,;() in (1.1) is obtained by
putting Q = Ip i.e., q* = 1 in (3.5). In this case a is usually taken as n~!'.
There are, of course, simpler improved estimators (improvement over n~'S) for
this loss function. Perlman (1972) proved that # n™!S dominates n™'S for any
B, (np-2)/{np+2) £ B < 1. Such a simple dominance result holds for the loss
function L.(*) in (1.1) as well. I{ is proved in Haff (1979b) thal a S dominates
n~'S for any a, (n-1)/{n(n+1)) 8 a < n~', whatever be @ However, unlike for
the estimator in (3.5), the amouni of risk improvement for these simple

estunators is marginal.

Remark 3.2. The identity matrix Ip in (3.3) and (3.4) can be replaced by any

p.d. matrix C in which case u need be redefined as u = 1/(trS—!C).

a—1(H)

(3.6) I, = b{§7' + vt(v)Ip}, b = (n-p-3)(n-p)/(n-1),
v = 1/tr(S), 0 < t(v) € 2(p-1)/(n-p)
and t'(v) & 0, dominates d,S7!.
(3.7) £ S st v vt(wIp), vo= IsITYP, t(v) satisfying

{(4/p)[vt (v) + t(v)] + 2b¥t(v)}q*
+ bt2(v) € 0, where b¥ = b - (n-p-1),

x - b 1/p

q" = p(? q;;) /? a4

dominates b S~!', whatever Q.

Remark 3.3. The result for the loss function L;{*) in (1.2) is obtained from
(3.7) by putting Q = I, i.e., q* = 1. In this case b is usually taken as
(n-p-1). Again, for this loss function also, there are simpler improved
estimators. Haff (1977) showed that for any b, n-p-3 ¢ b ¢« n-p-1, b S§°!

dominantes (n-p-1)S~'. However, the amount of risk improvement is marginal.

Remark 3.4, For the loss function L (') in (1.2), Haff (1979a) obtained another

class of more improved estimators of [~'. This is not discussed here.
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Remark 3.5. So far no Haff-type improved estimator is available which
dominates eoptlsl for estimating the generalized variance |Z| under the loss
functions in (1.3). Also, no Haff-type dominance result is known for the loss
function L,(*) in (1.2) which improves over d,S™! for estimating I'.

Dominance results for these problems are presented in the next section.

4., Stlein’s testimators.

The methods described in Sections 2 and 3 above for improving over the
best affine equivariant estimators for the loss functions in (1.1) and (1.2) are
based on different functions of S, but ignoring X all the time. Clearly these
methods do not work when p = 1. This is because for estimating the variance
o2 of a normal population with unknown mean u, if the sample mean is ignored,
the best multiple of the sample variance is admissible under both entropy loss
and squared error loss. Stein (1964) came up with an ingenius idea to use
the sample mean along with the sample variance in order to obtain an
improved estimator of ¢3. For the squared error loss, Stein’s improved
estimator has the form ¢? = min{(n+1)7? % (yi-¥)?, (n+2)7? 'z’ (yi—Ho)?] where
Ho 18 any fixed constant. Such an estim;tor is also called al testimator because

of its obvious interpretation as the result of a suitable test procedure.

Recently, Stein’s (1964) technique has been successfully generalized in
the multivariate case to deal with all the loss functions in (1.3) and the
entropy losses in (1.1) and (1.2). We now have testimators which are better
than eopt|S| for estimating ‘X', than c,S for estimating I when the loss is
Ls(*) in {1.1), and than d,S~! for estimating I~-' when the loas is L,(*) in
(1.2). See Sinha (1976), Sinha and Ghosh (1986), and alsc Shorrock and Zidek
(1976). However, simulation results show that the amount of risk improvement
is marginal in most cases except when the loss is L,(') in (1.2). A brief
description of Lhese testimators is given below. We use the notation X, S as

given in the Introduction.

For estimating |Z| under the loss function L,(*) or L,(*) or Li(*) in (1.3),

~ _ t
the testimator better than e,IS' is given by IZI, = min{'(l(j—n‘%(t})i%* Is + XX’I'
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Ln_:}'g_)_' IS|}. Under the loss functions L.(:) and Lg(*) in (1.3), the improved
ot {nopd+l)! 1o L oyt

testimators are respectively given by li‘l. min{

(n—4+k)!
{(n-p-4)! a s (n-p-2+k)! ’ {(n-p-2)!
(n_4)! lsl} and |2|5 - mln{ (n’2+k)! |S + XX |, (n—z)' lsl}. On the

other hand, for estimating I when the loss is L;(‘) in (1.1), the testimator i' =
(S + XX')/(n+k) if Xmax(X’S"X) 6 k/n, = S/n otherwise, dominates the best
affine invariant estimator S/n. For the other loss function L,(') in (1.2), the
improved testimator §-!' = (n-p-1+k)(S + XX')~' if Apax(X'S™'X) & k/(n-p-1), =
(n-p-1)S~! otherwise, dominates d,S~' for estimating I-'. Here Apgax(‘) stands

for the largest eigen value of (*).

A general procedure to obtain improved testimators is to consider
estimators equivariant under a nonnormal subgroup H of the full affine group
G. Typically, the group G acts on (X,S) and (¢,L) as X » AX + B, ¢ » At + B,
S - ASA', I - AZA’ where A:p x p is nonsingular and B:p x k is any matrix.
Here ¢:p x k = (€,,0..y€k). The subgroup H is obtained from G by putting B =
0. It turns out that estimators of I equivariant under H are of the form f=
WyW where S = WW', W:p x p is nonsingular, and y » w(UU'):p x p with U =
WX, For a specified loss function, the best choice of the function v¥()
usually involves the unknown ©paramcters ¢ and I  Dbesides being
computationally intractable. This is also the case for estimating I~!' and [t
for which estimators of the form i“ = W-'y='W-' and |i| = ISlv(X'S"X)
respectively are considered where ¥ in the second case is a scalar. However,
for mosi problems, an upper bound of the optimum ¥, say +¥,, is available.
Because of the convex nature of the loss functions, it then follows that given
any estimator with a specified v¥*, putting vy = min(¥o,¥¥) results in
improvement of risk. When ¥* and ¥, are matrices, ; is cefined as ; = Yo if
¥o & ¥ = y¥ otherwise, where ¥, & ¥* means ¥* - ¥, is n.n.d. This is the

basis of derivation of all the testimators discussed in this section.

Remark 4.1. It is interesting to observe that the testimators of I, ! of l):l
defined above are based on different test statistice. For [ and [7!, a test
based on the maximum root of X'S~'X is used, while for ‘II it is the likelihood

ratio lest. in all the cases, the underlying null hypothesis is ¢ = 0.
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Remark 4.2. Sequential testimators of I, I~' and |£], based on suitable tests
of parts of ¢, all of which dominate the corresponding best affine equivariant
estimators are also available. See Sinha (1976) and Sinha and Ghosh (1986) for
detail.

ﬁ 5. Open Problems

The following is a list of the open problems in the area discussed in the
paper.
{a) It will be interesting to develop Haff-type improved estimators for
estimating the precision matrix [~! under the loss function L;(*) in
(1.2).
(b) For estimating the generalized variance |I| under the loss functions
in (1.3), so far no Haff-type improved estimator is available. Is it
¢ true that the estimators eoptisl are admissible when X is ignored?
A partial answer is available in Das Gupta (1982).
(c) So far, Stein’s testimators are available only for the loss functions

L,(*) in (1.1) and (1.2). What happens for other loss funclions?
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